
A

Scalable Multiphysics Network Simulation Using PETSc DMNetwork

DANIEL A. MALDONADO, Argonne National Laboratory
SHRIRANG ABHYANKAR, Argonne National Laboratory
BARRY SMITH, Argonne National Laboratory
HONG ZHANG, Argonne National Laboratory

A scientific framework for simulations of large-scale networks, such as is required for the analysis of critical
infrastructure interaction and interdependencies, is needed for applications on exascale computers. Such a
framework must be able to manage heterogeneous physics and unstructured topology, and must be reusable.
To this end we have developed DMNetwork, a class in PETSc that provides data and topology management
and migration for network problems, along with multiphysics solvers to exploit the problem structure. It
eases the application development cycle by providing the necessary infrastructure through simple abstrac-
tions to define and query the network. This paper presents the design of the DMNetwork, illustrates its user
interface, and demonstrates its ability to solve large network problems through the numerical simulation
of a water pipe network with more than 2 billion variables on extreme-scale computers using up to 30,000
processor cores.

Additional Key Words and Phrases: Networks, multiphysics, extreme-scale computing

1. INTRODUCTION
Modeling, simulation, and analysis of critical infrastructures—assets providing es-
sential services that form the backbone of a nation’s health, security, and economy
including power distribution systems, water distribution, gas distribution, communi-
cations, and transportation—are of paramount importance from several strategically
important perspectives, including maintaining sustainability, security, and resiliency
and providing key insights for driving policy decisions. The Critical Infrastructures
Act [Dominici 2001] defines critical infrastructures as “systems and assets, whether
physical or virtual, so vital that the incapacity or destruction of such systems and as-
sets would have a debilitating impact on security, national economic security, national
public health or safety, or any combination of those matters.” Such infrastructures
comprise a large-scale network of assets spawned over wide geographical regions.

From the modeling and simulation standpoint, these critical infrastructures pose a
multiphysics problem on an unstructured network with problem sizes from millions
to billions of variables. Their analysis is computationally challenging because of the
need for managing unstructured topology and heterogeneous node-edge characteris-
tics. Several software packages assist scientists and engineers in modeling complex
multiphysics networked problems (e.g., Simulink R© [Mathworks 2017], Modelica [As-
sociation 2017], and LabView [Instruments 2017]), yet the problems they are able to
solve are restricted by size. EPANET, a software for simulating water distribution pip-
ing systems [Rossman 2000] is a particular example of network simulation tool that
can be implemented using our tools. For the scaling studies in this paper we incor-
porate a simple model of such a distribution system. Our work is not directly related
to network analysis packages, —such as, SNAP [Leskovec and Sosič 2016], NetworkX
[Hagberg et al. 2008], and NetworKit [Team 2017], —that do not provide simulation
capability. Nor is it related to domain specific simulators such as the packet-level simu-
lations modeling the transmission in a computer communication network in [Fujimoto
et al. 2003] or the internet simulator NS-3 [Wehrle et al. 2010, p. 15–34].

Exascale computing provides opportunities and challenges for simulating such com-
plex networked systems [Brase and Brown 2009]. In problems arising from fields as
diverse as power distribution systems, water distribution, gas distribution, commu-

A:2 D. A. Maldonado et al.

nications, and transportation, a common mathematical structure exists that can be
exploited [Jansen and Tischendorf 2014] to develop scalable tools for multiphysics net-
work simulation.

In this paper, we present a new package, DMNetwork, for modeling and simula-
tion of multiphysics networks designed for exascale computers. DMNetwork provides
the underlying infrastructure for managing the topology and the physics for large-
scale networks. It is designed to scale for large networks while facilitating easy and
rapid development of network applications. DMNetwork is seamlessly integrated in
the Portable Extensible Toolkit for Scientific Computing (PETSc) [Balay et al. 2016],
thus allowing the usage of the solvers available in PETSc. The name DMNetwork
comes from the PETSc base class DM, that provides interfaces between the PETSc
time-integrators and algebraic solvers and problem specific representations of mathe-
matical models. For example, the PETSc DMDA class provides the connection between
partial differential equation models on structured grids and the PETSc solvers.

2. NETWORKS, PHYSICS AND SOLVERS
Consider a series of physical elements (water pipes, gas pipes, power transmission
lines) that are connected via junctions to form a network or a network of networks.
Our paper presents abstractions that allow users to express their problem concisely,
hide cumbersome data management operations, and use flexible and efficient solvers.
The abstractions provide several convenient ways for networked system composition
and decomposition, including the following.

(1) Domain decomposition [Smith and Tu 2013]: Decomposition of a computational do-
main into smaller subdomains. Each subnetwork is defined by a subregion of the
entire region on which the original network is defined, as illustrated in Fig. 1.

(2) Fieldsplit [Brown et al. 2012; Smith et al. 2012]: Splitting of a multiphysics system
into multiple single physics subsystems. Figure 2 shows a network composed of two
subnetworks that represent distinct physics (e.g., electrical and water distribution).

(3) Multilevel domain decomposition and fieldsplit: Combination of domain decomposi-
tion and fieldsplit, as shown in Fig. 3.

Fig. 1. A network is partitioned into two subnetworks, with regard to its topology.
.

In DMNetwork, to construct a network or a composite network, we add a series of
physical elements, for example, water pipes, gas pipes, and power transmission lines
as the edges of the graph, and pipe junctions, electrical generators and load systems

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:3

Fig. 2. A network, composed by two subnetworks of distinct physics (represented by solid and dashed lines)
(e.g., electrical and water distribution). Customized solvers can be applied to the individual subnetwork.

.

Fig. 3. A multilevel domain decomposition and fieldsplit solver can be used to solve this mixed case.
.

as the vertices of the graph. From this information DMNetwork builds a mathemat-
ical model for the entire physical system. The model is generally either a nonlinear
algebraic equation or a differential algebraic equation (DAE). The Jacobian operator
of such system often has the following structure:

N =


P1 . . . C1

P2 . . . C2

P3 . . . C3

...
...

...
. . .

...
D1 D2 D3 . . . J

 , (1)

where the submatrices Pi represent individual elements of the network: a water pipe
or a power transmission line, a water reservoir or an electrical generator. These ele-
ments can have dissimilar structures and time scales. For instance, in power systems
each vertex represents a mechanical generator that produces electrical energy, each
of which will have different parameters and even different equations. In water net-
works, the edges represent water conduits modeled with partial differential equations,
whereas the vertices represent either simple boundary conditions of pressure and flow

A:4 D. A. Maldonado et al.

or complex mechanical regulators such as valves or variable height reservoirs. Fur-
thermore, their physical meaning is independent from the network. The matrices J ,
Ci, and Di contain information about boundary conditions of the individual systems
system, such as continuity or energy conservation; that is, they provide constraints for
systems Pi. They also provide information about the topological structure of the system
(what is connected to what). The PETSc fieldsplit preconditioner can take advantage
of this structure by employing customized preconditioners for each Pi.

Consider three coupled networks. We can write

N =

N1 C1

N2 C2

N3 C3

D1 D2 D3 J

 , (2)

where J is the intersection network (e.g., overlapping elements in Fig. 1) andN1, N2, N3

have the same structure as N in Equation (1). Domain decomposition preconditioners,
such as block Jacobi and the overlapping additive Schwarz method [Balay et al. 2016],
are amenable to parallel execution utilizing this structure. Depending on the network
physics, it can be modeled by using a set of linear algebraic equations, a set of nonlinear
equations, or a set of time-dependent equations. The PETSc library provides three
layers of solvers: KSP, SNES, and TS, as illustrated in Table I, to solve these problems,
respectively.

Table I. PETSc Solvers

Solver Name Description Mathematical Form
KSP and PC Krylov subspace solvers and preconditioners Ax− b = 0

SNES Non-linear solvers F (x) = 0
TS Time stepping solvers F (t, x, ẋ) = 0

DMNetwork is compatible with these solvers and provides a set of directives to help
users set up their problem. As an example, consider a nonlinear system F (x) = 0. With
Newton’s method, we can find a sequence of approximations:

J(xk)∆xk = −F (xk), xk+1 = xk + ∆xk. (3)
We obtain each iterate by evaluating F (xk) (residual function) and J(xk) (Jacobian)
and solving Equation (3) iteratively to obtain the approximated solution xk. For a large
system comprising equations of different nature and different parameters, building the
model requires the following tasks:

— Create problem specific data structures to distribute the parameters across the com-
puter processors.

— Calculate the dimension of Jacobian matrix J , and preallocate J (determine the
non-zero pattern of the sparse matrix).

— Evaluate the residual function and Jacobian for the given parameters.

With DMNetwork, the process is greatly simplified. The user needs to provide the
number of degrees of freedom for each edge and vertex. Then DMNetwork takes care
of the parallel distribution, preallocation, partitioning, and setting up of needed data
structures to allow utilizing user-provided function evaluation routines. The user func-
tion merely needs to iterate by edges and vertices, retrieve the problem specific data
and variables associated with them, and perform the local portion of the function eval-
uation based on their local mathematical models. PETSc also provides some tools to
help approximate the Jacobian matrices efficiently via finite differences with coloring
(discussed in the next section).

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:5

3. SOFTWARE STRUCTURE AND INTERFACE
In the preceding section we showed that the systems of equations arising from net-
work problems present some mathematical structure amenable to parallelization. Fur-
thermore, given that each subsystem of equations can present different physics or
mathematical structure, supporting the use of different solvers for each subsystem is
necessary. Since its inception, PETSc was meant to provide an environment for test-
ing various solver options, particularly linear Krylov methods and the preconditioners
they use, with minimal coding effort from the user. The user can often switch between
solvers with runtime options.

DMPlex is a class in PETSc to handle general unstructured meshes, the mathemat-
ical models on the meshes and their connection to the PETSc solvers. [Lange et al.
2016]. DMNetwork is a recently developed subclass of DMPlex that provides specific
abstractions for general networks. Both the vertices and edges can represent any num-
ber of physical models. New vertices and edges can be easily inserted through an API,
and the existing ones can be removed or updated with minimum local changes. On mul-
tiple processors, DMNetwork can partition the network using the graph partitioning
packages, such as ParMetis [Karypis et al. 2005] or Chaco [Hendrickson and Leland
1995], and distribute the problem specific data describing the physics to the appropri-
ate processors.

3.1. DMNetwork Object and Its Interface
The DMNetwork object contains topological information about the problem as well as
physical modeling data. In this section, we illustrate the DMNetwork interface. First
we create a DMNetwork object. Users create their own problem specific data struc-
tures, based on C structs, that contain data associated to the physics occurring in the
vertices and edges (for example, in the edge data structure, the user may include the
electrical resistance of the circuit). These problem specific data structures are regis-
tered as components that can be accessed later via DMNetwork.

1 PetscInt VERTEX, EDGE; /∗ keys for the two models ∗ /
2 typedef struct vertex Vertex ;
3 typedef struct edge Edge ;
4 DMNetworkCreate (PETSC COMM WORLD,&dmnetwork) ;
5 DMNetworkRegisterComponent (dmnetwork , ” vertex ” , s i z e o f (Vertex) ,&VERTEX) ;
6 DMNetworkRegisterComponent (dmnetwork , ” edge ” , s i z e o f (Edge) ,&EDGE) ;

In this simple example, we have only two problem specific data structures, one for
edges and one for vertices. In realistic simulations there are almost always more than
two types.

Next, we provide the DMNetwork with information about the topology of the prob-
lem: the local number of vertices, the number of edges, and a list of the connectivity of
the edges.

1 DMNetworkSetSizes (dmnetwork , nvertex , nedge ,PETSC DETERMINE,PETSC DETERMINE) ;
2 DMNetworkSetEdgeList (dmnetwork , edge l i s t) ;
3 DMNetworkLayoutSetUp(dmnetwork) ;

In the final function call the DMNetwork creates a preliminary internal representation
of the graph defined by the network. Edges and vertices each are assigned to a unique
process. We can access the range of edges and vertices on the process, and add the
problem-specific data parameters and the number of degrees of freedom for each entity.

1 DMNetworkGetEdgeRange (dmnetwork,&eStart ,&eEnd) ;
2 f o r (i = eStart ; i < eEnd ; i ++) {
3 DMNetworkAddComponent(dmnetwork , i ,EDGE,&edge [i−eStart])
4 DMNetworkAddNumVariables (dmnetwork , i , nvar) ;
5 }

A:6 D. A. Maldonado et al.

1 DMNetworkGetVertexRange (dmnetwork,&vStart ,&vEnd) ;
2 f o r (i = vStart ; i < vEnd ; i ++) {
3 DMNetworkAddComponent(dmnetwork , i ,VERTEX,&vertex [i−vStart]) ;
4 DMNetworkAddNumVariables (dmnetwork , i , nvar)
5 }

The network then is partitioned and distributed to multiple processors to approxi-
mately equalize the number of unknowns per process.

1 DMSetUp(dmnetwork) ;
2 DMNetworkDistribute(&dmnetwork , 0) ;

With these steps the user has created a distributed network object that contains the
following:

— A (partitioned) graph representation of the problem
— A data structure containing needed ghost vertices and communication data struc-

tures needed to update the ghost values
— Memory space for the unknowns in each vertex and edge
— Physical data in each vertex and edge, related to the model for that entity
— Preallocation of the (Jacobian) matrices, that is, the determination of the nonzero

structure of the matrix based on the graph.

Whether the user wants to solve the problem using a linear solver, a nonlinear solver,
or a time-integrator, this DMNetwork object facilitates both the evaluation of the resid-
ual function (or right-hand side vector for linear problems), and computation of the
(Jacobian) matrix.

3.2. A Example: Electric Circuit
We will solve a toy linear electric circuit problem from [Strang 2007]. The topology
of the electrical circuit is shown in Fig. 4. The circuit must obey the Kirchhoff laws.
Hence, in the vertices of the graph, the energy is not accumulated:∑

j

i(j) − isource(k) = 0 , (4)

where i(j) is the current flowing though the branch (edge) j, incident to the node k. The
isource(k) allows one to account for current sources at node k. The voltage drop across the
edge k, from v(i) to v(j), is defined by Ohm’s law plus any existing voltage source v(k)source:

i(k)

r(k)
+ v(j) − v(i) − v

(k)
source = 0 . (5)

We use the superscript and subscript to distinguish between edge and vertex quanti-
ties, respectively. In this case i(∗) is an edge variable, and v(∗) is a vertex variable.

These equations, as Strang[2007] shows, can be represented with the KKT matrix
and the graph Laplacian. This structure is shared by many network flow problems,
such as water networks: [

R−1 A
AT

] [
i
v

]
=

[
vsource
isource

]
. (6)

The practical implementation of this problem requires knowing the topology or con-
nectivity of the network (a list of vertices and a list of edges defined by vertex pairs)
and the physics (resistance, values of voltage source, and current source).

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:7

Fig. 4. Network diagram. Resistances are represented by zig-zag lines (R), voltage sources by parallel lines
(V), and current sources by an arrow (I). The vertices of the graph are potentials, and the current flows
across the edges.

.

3.3. Residual Function
The following is a code fragment from petsc/src/ksp/ksp/examples/tutorials/net-
work/ex1.c [Balay et al. 2016]. It illustrates how to access DMNetwork information,
iterate over the graph structure, and define the numerical problem that must be solved
by computing the matrix and right-hand side vector for the linear system.

1 PetscErrorCode FormOperator (DM dmnetwork , Mat A, Vec b)
2 {
3 DMNetworkGetComponentDataArray (dmnetwork,&arr) ;
4 DMNetworkGetEdgeRange (dmnetwork,&eStart ,&eEnd) ;
5 DMNetworkGetVertexRange (dmnetwork,&vStart ,&vEnd) ;

The array arr contains the physical data we provided in the
DMNetworkAddComponent(). In order to achieve high performance, this problem
specific data is stored and managed by DMNetwork in a simple one-dimensional
array, as opposed to using pointers to a collection of C structs or C++ classes. Thus we
access the correct data for a given entity through a variable offset that DMNetwork
provides (shown below). We considered using a higher-level iterator construct to
loop over the entities; but based on many years of experience with unstructured
mesh codes, we have concluded that simple, basic data structures provide higher
performance and a simplicity of debugging that is more important than the slightly
simpler code syntax one can obtain with iterators. Of course developers are free to
layer an iterator abstraction of their liking directly on top of the DMNetwork interface
if they value the syntax it offers.

The construction of the matrix and right-hand side vector can be implemented with
the following code:

1 f o r (e = eStart ; e < eEnd ; e++) {
2 DMNetworkGetComponentTypeOffset (dmnetwork , e ,0 ,NULL,&compoffset) ;
3 DMNetworkGetVariableOffset (dmnetwork , e,& l o f s t) ;
4 DMNetworkGetConnectedNodes (dmnetwork , e,&cone) ;
5 DMNetworkGetVariableOffset (dmnetwork , cone [0] ,& l o f s t f r) ;
6 DMNetworkGetVariableOffset (dmnetwork , cone [1] ,& l o f s t t o) ;
7

8 branch = (Branch∗) (arr + compoffset) ;
9 barr [l o f s t] = branch−>bat ; /∗ battery value ∗ /

10

11 row [0] = l o f s t ;
12 co l [0] = l o f s t ; val [0] = 1 ;
13 co l [1] = l o f s t t o ; val [1] = 1 ;
14 co l [2] = l o f s t f r ; val [2] = −1;

A:8 D. A. Maldonado et al.

15 MatSetValuesLocal (A,1 , row ,3 , col , val ,ADD VALUES) ;
16

17 /∗ from node ∗ /
18 DMNetworkGetComponentTypeOffset (dmnetwork , cone [0] , 0 ,NULL,&compoffset) ;
19 node = (Node∗) (arr + compoffset) ;
20

21 i f (! node−>gr) { /∗ not a boundary node ∗ /
22 row [0] = l o f s t f r ;
23 co l [0] = l o f s t ; val [0] = −1;
24 MatSetValuesLocal (A,1 , row ,1 , col , val ,ADD VALUES) ;
25 }
26

27 /∗ to node ∗ /
28 DMNetworkGetComponentTypeOffset (dmnetwork , cone [1] , 0 ,NULL,&compoffset) ;
29 node = (Node∗) (arr + compoffset) ;
30

31 i f (! node−>gr) { /∗ not a boundary node ∗ /
32 row [0] = l o f s t t o ;
33 co l [0] = l o f s t ; val [0] = 1 ;
34 MatSetValuesLocal (A,1 , row ,1 , col , val ,ADD VALUES) ;
35 }
36 }
37 f o r (v = vStart ; v < vEnd ; v++) {
38 DMNetworkIsGhostVertex (dmnetwork , v,&ghost) ;
39 i f (! ghost) {
40 DMNetworkGetComponentTypeOffset (dmnetwork , v ,0 ,NULL,&compoffset) ;
41 DMNetworkGetVariableOffset (dmnetwork , v,& l o f s t) ;
42 node = (Node∗) (arr + compoffset) ;
43

44 i f (node−>gr) {
45 row [0] = l o f s t ;
46 co l [0] = l o f s t ; val [0] = 1 ;
47 MatSetValuesLocal (A,1 , row ,1 , col , val ,ADD VALUES) ;
48 } e lse {
49 barr [l o f s t] += node−>i n j ;
50 }
51 }
52 }

First we iterate over the edges (Line 1). For each edge we retrieve the component
offset (that is, a pointer to the problem specific data for this edge), the edge variable
offset, and the offsets for the variables in the boundary vertices (Lines 2–6). Next we
write the Kirchhoff voltage law (Lines 11–15); and then, for each boundary vertex,
we check whether the vertex is not a ghost value and write its contribution to the
Kirchhoff current law (Lines 18–36). We then iterate over each vertex and add the
contribution of each current injection to the corresponding equation.

3.4. Finite-Difference Jacobian Approximation with Coloring
In the engineering fields, from which many of the network problems arise, the mod-
els often have a complicated structure: they may include control logic and react in
a discrete way to transients in the network. Writing an analytical Jacobian matrix
evaluation subroutine is a daunting, time-consuming, and error-prone task. PETSc of-
fers tools to calculate a finite-difference approximation of the Jacobian matrix suitable
for some classes of problems. DMNetwork contains information about the connectivity
of the vertices and edges, which enables building a sparse Jacobian matrix structure
and using matrix coloring schemes [Coleman and More 1983] for efficient Jacobian
evaluation. We have designed and implemented a customized, scalable matrix color-
ing routine for networks that minimizes the number of colors required and thus only
incurs a small amount of interprocessor data communication. We also allow the input

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:9

of problem-specific information to reduce memory needs by using user-provided sparse
matrix nonzero structures for individual edges and vertices:

1 DMNetworkEdgeSetMatrix (dmnetwork , e , Juser) ;
2 DMNetworkVertexSetMatrix (dmnetwork , v , Juser) ;

The finite-difference Jacobian approximation with coloring for networked applica-
tions then involves the following steps:

(1) User provides subroutine for local function evaluation.
(2) User provides the problem specific sparse matrix nonzero structures for the individ-

ual edges and vertices; if none are provided, dense matrix subblocks are used.
(3) DMNetwork builds the global sparse Jacobian matrix structure based on the global

network topology and problem specific sparse matrix nonzero structures (when pro-
vided).

(4) Jacobian matrix is computed by finite-difference approximation using a matrix col-
oring scheme in an efficient and scalable fashion.

We present numerical experiments in Sec. 4.4 to demonstrate that this Jacobian
approximation can be highly efficient and scalable on extreme-scale computers.

4. HYDRAULIC TRANSIENT SIMULATION ON EXTREME-SCALE COMPUTERS
Hydraulic transient simulations are performed for problems such as water distribu-
tion, oil distribution, and hydraulic generation. In this paper we focus on the simu-
lation of water transients on closed conduits such as an urban distribution system.
Simulation of hydraulic transients involves the calculation of pressure changes in-
duced by a sudden change of velocity of the fluid [Chaudhry 1979; Wylie and Streeter
1978]. These velocity changes create a pressure wave that propagates proportionally
to the speed of sound in the fluid media and the friction of the conduits. The modeling
of this problem involves the solution of a set of PDEs. The disturbance of the system
is introduced through a perturbation on the boundary conditions and results in a stiff
differential equation, traditionally solved through the method of characteristics.

4.1. Description of the Problem
To facilitate discussion, we introduce the following notation:

nv, ne: number of junctions (vertices) and pipes (edges) of the network;
Qk, Hk: water flow and pressure for pipe k;
Qi, Hi: boundary values of water flow and pressure adjacent to junction i;
nei: number of connected pipes at junction i.

For pipe k, the water flow and pressure are described by the momentum and conti-
nuity equations:

∂Qk

∂t
+ gA

∂Hk

∂x
+RQk

∣∣Qk
∣∣ = 0 , (7)

gA
∂Hk

∂t
+ a2

∂Qk

∂x
= 0 , (8)

where g is the gravity constant, A is the area of the conduit, R = f
2DA with f being the

friction of the conduit and D its diameter, and a the velocity of the pressure wave in

A:10 D. A. Maldonado et al.

the conduit. At an interior junction i, nei > 1, the boundary conditions satisfy
nei∑
j=1

Q
kj

i = 0 , (9)

H
kj

i −H
k1
i = 0, j = 2 . . . nei . (10)

Equations (7)–(10) are built over a network or a network of subnetworks. Note that
the physical meaning of these equations corresponds to conservation of energy and
mass. Special boundaries such as the connection to a reservoir, valve, or pump provide
application-specific boundary conditions.

4.2. Steady State
Systems engineers customarily divide the simulation of a dynamic system into two
stages: steady state and transient state. Most systems are assumed to operate in
steady-state conditions until some disturbance perturbs the system. In steady state
the magnitudes do not vary with time. Thus Equations (7)–(8) are reduced to

gA
∂Hk

∂x
+RQk

∣∣Qk
∣∣ = 0 , (11)

∂Qk

∂x
= 0 . (12)

We can make two assertions for steady state: (1) along an individual pipe, the flow
Qk is constant; and (2) the drop of pressure Hk can be described with a linear func-
tion. Hence values (Q, H) inside a pipe can be uniquely determined by their bound-
ary values, which satisfy the interior junction equations (9)–(10) and special boundary
conditions. Equations (9) and (10) represent global connectivity of the network. Adding
special boundary conditions, they form an algebraic differential subsystem that we call
the junction subsystem. We name the rest of system the pipe subsystem. The junction
subsystem has an ill-conditioned Jacobian matrix in general; its size is determined by
the numbers of vertices, edges, and the network layout but is independent of the level
of refinement used within the pipes for the differential equations (11)–(12). Thus it
forms a small, but difficult to solve, subsystem requiring strong preconditioner for its
solution.

The Newton-Krylov method [Kelley 2003] is used to solve the nonlinear steady state
problem. For its linear iterations, we use the FieldSplit preconditioner to extract the
junction equations from entire system, apply a direct linear solver (e.g., MUMPS paral-
lel LU solver [Amestoy et al. 2001]), and use block Jacobi with ILU(0) in each subblock
of the Jacobian for the rest of the system. The command-line options for this execution
are as follows.

Preconditioner for entire system:

-initsol_pc_type fieldsplit

Preconditioner for junction subsystem:

-initsol_fieldsplit_junction_pc_type lu
-initsol_fieldsplit_junction_pc_factor_mat_solver_package mumps

Preconditioner for pipe subsystem:

-initsol_fieldsplit_pipe_pc_type bjacobi

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:11

-initsol_fieldsplit_pipe_sub_pc_type ilu

The prefix initsol is used to distinguish the steady-state system from the transient
system, which is solved next. In Table II we compare the performance and strong scal-
ability of the LU and FieldSplit preconditioners for a single network with 3,949,792
variables on Edison, a Cray XC30 system (see Sec. 4.4). Most of the time is spent in
the LU factorization. Hence when we use FieldSplit employing block Jacobi on the
larger subdomain, computation time is greatly reduced.

Table II. Comparison of LU and FieldSplit Preconditioners

No. of SNES Solution Time (sec) KSP Solution Time (sec)
Cores LU FieldSplit LU FieldSplit

24 52.0 3.91 49.1 1.10
48 45.9 3.84 43.0 0.93
72 42.3 2.92 41.0 0.67

The steady state solution was compared with the EPANET software using a bench-
mark case from [de Corte and Sörensen 2014] consisting on 74 junctions, 102 pipes
and one reservoir. The solution of the problem was consistent with EPANET’s solu-
tion, minding the differences in the approach.

4.3. Transient State
In the transient state we calculate the pressure wave that arises after a perturbation
is applied to the steady state solution. We solve Equations (7)-(10), which are a set of
hyperbolic partial differential and algebraic equations. We have simulated a case ap-
pearing in [Wylie and Streeter 1978, p. 38] to benchmark the accuracy of our solution.
The case consists on a single pipe connected to a reservoir and a valve. At time t = 0+

the valve is closed instantaneously, creating a pressure wave that propagates through
the pipe back and forward. In Fig. 5, we plot the pressure profiles (hydraulic or piezo-
metric head, in water column meters) for a set of equally spaced points along the water
pipe. In particular, the dark blue curve in the figure represents the pressure at the wa-
ter reservoir. The water reservoir is treated as a constant pressure source, and hence
the pressure is constant through time. On the other extreme, in light blue, we can
see the pressure wave next to the valve, which sharply increases after its closure. The
point right next to the valve (in yellow) will not be perturbed until the pressure wave
has reached it, at a time that is proportional to the speed of the wave. This example
gives us a physical intuition of the importance of the Courant number in computing hy-
perbolic PDEs. Several methods to solve such systems are employed in the literature.
In this section we describe two of the most common ones.

4.3.1. Method of characteristics. The method of characteristics [Chaudhry 2014] involves
applying a change of variables to Equations (7)–(8). Taking (8), scaling it by a term λ,
and adding it to (7), we obtain

(
∂Qk

∂t
+ λa2

∂Qk

∂x
) + λgA(

∂Hk

∂t
+

1

λ

∂Hk

∂x
) +RQk

∣∣Qk
∣∣ = 0 . (13)

Using the chain rule, we obtain

dQ

dt
=
∂Q

∂t
+
∂Q

∂x

dx

dt
, (14)

A:12 D. A. Maldonado et al.

Fig. 5. Pressure wave on a conduit. This pressure wave is created in a single pipe with a conduit, when
the end of the conduit is instantaneously closed. The vertical axis measures the piezometric head in water
column meters, and each different color shows the pressure of a point in the pipe.

.

and
dH

dt
=
∂H

∂t
+
∂H

∂x

dx

dt
. (15)

By defining
1

λ
=
dx

dt
= λa2 , (16)

that is λ = ± 1
a , we obtain the ODEs in which the independent variable x has been

eliminated:
∂Q

∂t
± gA

a

∂H

∂t
+RQ |Q| = 0 . (17)

4.3.2. Lax scheme. An alternative to the method of characteristics is the Lax scheme
[Chaudhry 2014], an explicit first-order scheme. We approximate the partial deriva-
tives as

∂H

∂t
=
Hj+1

i − H̄i

∆t
,

∂Q

∂t
=
Qj+1

i − Q̄i

∆t
, (18)

∂H

∂x
=
Hj

i+1 −H
j
i−1

2∆x
,

∂Q

∂x
=
Qj

i+1 −Q
j
i−1

2∆x
, (19)

H̄i = 0.5(Hj
i−1 +Hj

i+1), Q̄i = 0.5(Qj
i−1 +Qj

i+1) . (20)

These equations are applicable only to interior points; hence we use the characteristic
equations at the boundaries.

4.4. Experimental Results
We conducted experiments on two computer systems: Cetus, an IBM Blue Gene/Q su-
percomputer in the Argonne Leadership Computing Facility [ALCF 2017], and Edison,

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:13

a Cray XC30 system in the National Energy Research Scientific Computing Center
[NERSC 2017]. Cetus has 4,096 nodes, each with 16 1600 MHz PowerPC A2 cores with
16 GB RAM per node, resulting in a total of 65,536 cores. Edison has 5,576 compute
nodes. A node has 64 GB memory and two sockets, each with a 12-core Intel processor
at 2.4 GHz, giving a total of 133,824 cores.

Fig. 6. Water network provided by [de Corte and Sörensen 2014].
.

Our test network was obtained from [de Corte and Sörensen 2014] in EPANET for-
mat [Rossman 2000]. It consists of 926 vertices and 1,109 edges of various lengths (see
Fig. 6). Equations (7)–(10) were discretized via the finite volume method into a sys-
tem over this single network with a total of 3,949,792 variables. We call the resulting
DMNetwork sub-dmnetwork.

We then built a large network by duplicating sub-dmnetwork and composing them
into a composite dmnetwork. Artificial edges were added between the sub-dmnetworks
without introducing new variables over these edges. To perform weak-scaling studies
of the simulation when the number of sub-dmneworks was doubled, we increase the
number of processor cores proportionally.

The focus of our simulation is the time integration of the transient-state system,
with its initial solution computed from the steady-state system (11)–(12). All the ex-
periments were done by using the PETSc DAE solver, that is, the Lax scheme for each
pipe and backward Euler time integration for the entire composite network system
(7)–(10). The Jacobian matrix was approximated by finite differencing with coloring,
as discussed in Sec. 3.4, and the Krylov GMRES iterations with selected precondi-
tioner were implemented for the linear solves. Since the Jacobian matrix structure
does not change with the time, the computing time spent at each time step remains
approximately constant. We run only 10 time steps for each test case.

Tables III and IV show the scalability of the simulation on Cetus and Edison. The
linear solvers dominate the computation with efficiency determined by the selected
preconditioners. Among all the preconditioners provided by PETSc, we found the block
Jacobi and the additive Schwarz method (ASM) with subdomain overlapping 1 (ov.1)
and 2 (ov.2) to be the most efficient for our application. In the tables, we compare these
three preconditioners using the total simulation time and cumulative number of linear
iterations (given in parentheses).

A:14 D. A. Maldonado et al.

Table III. Execution Time of Transient State on Cetus

No. of Variables Linear Preconditioner
Cores (in millions) Block Jacobi ASM ASM

ov. 1 ov. 2
256 16 60.0 (43) 50.5 (24) 45.3 (20)

1,024 63 63.4 (49) 50.6 (24) 45.4 (20)
4,096 253 86.1 (54) 72.8 (34) 58.7 (20)

16,384* 1,012 94.1 (54) 81.2 (34) 65.3 (20)

* We set the number of cores per node to 8 (instead of 16) to double the
memory available per core.

Table IV. Execution Time of Transient State on Edison

No. of Variables Maximum Variables Linear Preconditioner
Cores per Core Block Jacobi ASM ASM

(in millions) (in thousands) ov. 1 ov. 2
240 16 106 9.9 (48) 7.3 (25) 6.4 (20)
960 63 106 10.6 (55) 7.0 (24) 6.2 (20)

3,840 253 106 10.4 (53) 7.3 (24) 6.7 (20)
15,360 1,012 104 11.9 (53) 11.4 (26) 9.9 (20)
30,720 2,023 117 20.0 (53) 17.6 (26) 17.2 (20)

The water pipe network has pipes of various lengths which gives rise to pipes with
varying numbers of degrees of freedom. Since each pipe is restricted to a single pro-
cess, some job imbalance results. As the number of cores increases, the job imbalance
worsens, as indicated by the maximum number of variables per core in column 3 of
Table IV. This imbalance affects the scaling with increased number of cores.

To investigate this, we then doubled the number of sub-dmnetworks for each test
and listed the results in Table V. As the work pool increased for each core, the job
balance as well as the scalability improved.

Table V. Execution Time of Transient State on Edison on Doubled Problem Sizes

No. of Variables Maximum Variables Linear Preconditioner
Cores per Core Block Jacobi ASM ASM

(in millions) (in thousands) ov. 1 ov. 2
240 32 151 14.1 (40) 11.8 (24) 10.4 (20)
960 126 152 14.5 (47) 11.1 (24) 10.1 (20)

3,840 506 157 16.2 (50) 12.1 (24) 11.2 (20)
15,360 2,023 162 18.7 (50) 15.7 (24) 16.9 (20)

Table VI shows the weak scalability of the residual function evaluation and Jaco-
bian evaluation using the matrix coloring scheme developed for the DMNetwork as
described in Sec. 3.4. The data are taken from the cases using the block Jacobi pre-
conditioner. Other cases give similar scalabilities. Along with the total execution time
spent on these evaluations, we list their percentage of total time in the transient-state
simulation.

In PETSc, the initial DMNetwork data structure representing the network is cur-
rently built by a single process sequentially; then it is distributed to the multiple pro-
cesses for parallel construction of the physics and computation (see Sec. 3.1). Thus the
size of application we can experiment with is limited by the local memory of computer
systems. Cetus has 1 GB or 2 GB of memory per core when 16 cores or 8 cores are
used per node, respectively; and Edison has 2.67 GB of memory per core. The largest

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:15

Table VI. Execution Time of Residual and Jacobian Evaluation on Edison

No. of Variables Residual Function Jacobian Matrix
Cores (in millions)

240 16 0.9 (7 %) 0.9 (9%)
960 63 0.9 (6 %) 1.0 (9 %)

3,840 253 0.9 (7 %) 1.0 (9 %)
15,360 1,012 1.4 (6 %) 1.5 (12 %)
30,720 2,023 2.8 (5 %) 3.1 (14 %)

problems we are able to run on these machines are approximately 1 billion variables
using 16,384 cores on Cetus and 2 billion variables using 30,720 cores on Edison, re-
spectively. Enhancements to DMPLex to support parallel construction of the graph will
immediately provide this capability to DMNetwork.

The results demonstrate that, using DMNetwork, we can achieve satisfying weak
scalability for the simulation with 2 billion variables using up to 30,000 cores. Overall,
for most test cases, ASM, with an overlap of 2, is the fastest with the fewest number
of linear iterations.

5. CONCLUSIONS
This paper introduces DMNetwork, a new class in PETSc for the simulation of large
network problems. DMNetwork interfaces with all the solvers available in PETSc, pro-
viding the user with the ability to switch between different solvers with minimal ef-
fort and offering an effective test base for network structured problems. DMNetwork
greatly simplifies programming parallel code to solve potentially complicated network
problems. Large-scale experiments with a water network show the robustness of the
data structures and the scalability of the data structures and solver.

ACKNOWLEDGMENTS

We thank Mathew Knepley for his help in designing and implementing DMNetwork. This material is based
upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research under Contract DE-AC02-06CH11357. This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES
ALCF. 2017. Cetus supercomputer. http://www.alcf.anl.gov/cetus-and-vesta. (2017).
Patrick R. Amestoy, Ian S. Duff, Jean-Yves L’Excellent, and Jacko Koster. 2001. A fully asynchronous mul-

tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 1 (2001), 15–41.
Modelica Association. 2017. Modelica web page. (2017). https://www.modelica.org/
Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisan-

dro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curf-
man McInnes, Karl Rupp, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. 2016.
PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.7. Argonne National Laboratory.
http://www.mcs.anl.gov/petsc

James M. Brase and David L. Brown. 2009. Modeling, simulation and analysis of complex networked sys-
tems: A program plan. Lawrence Livermore National Laboratory May (2009).

Jed Brown, Matthew G. Knepley, David A. May, Lois C. McInnes, and Barry F. Smith. 2012. Composable
linear solvers for multiphysics. In Proceeedings of the 11th International Symposium on Parallel and
Distributed Computing (ISPDC 2012). IEEE Computer Society, 55–62. http://doi.ieeecomputersociety.
org/10.1109/ISPDC.2012.16

M. Hanif Chaudhry. 1979. Applied Hydraulic Transients. Van Nostrand Reinhold Company.
M. Hanif Chaudhry. 2014. Applied Hydraulic Transients. Springer.

A:16 D. A. Maldonado et al.

Thomas F. Coleman and Jorge J. More. 1983. Estimation of sparse Jacobian matrices and graph coloring
problems. SIAM J. Numer. Anal. 20, 1 (Feb. 1983), 187–209.

Annelies de Corte and Kenneth Sörensen. 2014. HydroGen: an artificial water distribution network genera-
tor. Water Resources Management 28, 2 (2014), 333–350.

Pete V. Dominici. 2001. Critical Infrastructures Protection Act of 2001. (2001). https://www.gpo.gov/fdsys/
pkg/BILLS-107s1407is/pdf/BILLS-107s1407is.pdf

Richard M. Fujimoto, Kalyan S. Perumalla, Andy Park, H. Wu, Mostafa H. Ammar, and George Riley. 2003.
Large-scale network simulation: how big? how fast?. In 11th IEEE/ACM International Symposium
on Modeling, Analysis, and Simulation of Computer Telecommunications Systems (MASCOTS 2003).
IEEE, Orlando, FL, USA.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Gaël
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA). 11–15.

Bruce Hendrickson and Robert Leland. 1995. A multilevel algorithm for partitioning graphs. In Supercom-
puting ’95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM). ACM Press,
New York, 28. DOI:http://dx.doi.org/10.1145/224170.224228

National Instruments. 2017. LabVIEW web page. (2017). http://www.ni.com/labview/
Lennart Jansen and Caren Tischendorf. 2014. A Unified (P)DAE Modeling Approach for Flow Networks. In

Progress in Differential-Algebraic Equations, S. Schöps, A. Bartel, M. Günther, E. Maten, and P. Müller
(Eds.). Springer, Berlin, Heidelberg, 127–152.

George Karypis et al. 2005. ParMETIS Web page. (2005). http://www.cs.umn.edu/∼karypis/metis/parmetis.
C. T. Kelley. 2003. Solving nonlinear equations with Newton’s method. SIAM.
Michael Lange, Lawrence Mitchell, Matthew G. Knepley, and Gerard J. Gorman. 2016. Efficient mesh man-

agement in Firedrake using PETSc-DMPlex. SIAM Journal on Scientific Computing 38, 5 (2016), S143–
S155. http://epubs.siam.org/doi/abs/10.1137/15M1026092

Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library.
ACM Transactions on Intelligent Systems and Technology (TIST) 8, 1 (2016), 1.

Mathworks. 2017. SIMULINK web page. (2017). https://www.mathworks.com/products/simulink.html
NERSC. 2017. Edison Supercomputer. https://www.nersc.gov/users/computational-systems/edison/. (2017).
Lewis A. Rossman. 2000. EPANET 2 Users Manual. Technical Report. Water Supply and Water Resources

Division, National Risk Management Research Laboratory, Cincinnati, OH 45268.
Barry Smith, Lois Curfman McInnes, Emil Constantinescu, Mark Adams, Satish Balay, Jed Brown,

Matthew Knepley, and Hong Zhang. 2012. PETSc’s software strategy for the design space of composable
extreme-scale solvers. Preprint ANL/MCS-P2059-0312. Argonne National Laboratory. DOE Exascale Re-
search Conference, April 16-18, 2012, Portland, OR.

B. F. Smith and X. Tu. 2013. Encyclopedia of Applied and Computational Mathematics. Springer, Chapter
Domain Decomposition.

Gilbert Strang. 2007. Computational Science and Engineering. Wellesley-Cambridge Press.
NetworKit Development Team. 2017. NetworKit web page. (2017). http://network-analysis.info
Klaus Wehrle, Mesut Güneş, and James Gross. 2010. Modeling and Tools for Network Simulation. Springer

Berlin Heidelberg.
E. Benjamin Wylie and Victor L. Streeter. 1978. Fluid Transients. McGraw-Hill Book Company.

Scalable Multiphysics Network Simulation Using PETSc DMNetwork A:17

Disclaimer. The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

